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If £() in all of Egs. (10) is the solution of (5) subject to (6)
and (7), all values in the n — r Egs. (10) are known except
Ei(ty) fors = r + 1, ..., n, and hence these values can be
found. _

The same result can be obtained with very little more labor
without the use of the adjoint equations. Let &:(t) for k =

r-+1,...,nben — r solutions of (5) subject to the initial
conditions
Ei(fo) =0 G=1...,7
Gill) =6 (@C=r+1,...,n)
These solutions determine the values &i(f). If w1 ..., u"

are any n — r constants
£ = wHiE O + ..+ prED) (11)

is a solution of (5) satisfying (6). If this solution is also to
satisfy (7)

ﬁi = r+1£r+ li(tl) + IR +ﬂ"£ni(tl) (?:=7'+1,...,7’L)

These n — 7 equations can be solved for ™ +1, . .., u" the
solution values substituted in (11), and then putting ¢ = &
fori =r + 1, ..., n yields the required values of & ().
Thus, the steps in this method are exactly parallel to those
in the adjoint method except that here one additional com-
putation (equivalent to a matrix X vector multiplication)
is necessary after the simultaneous linear equations have
been solved. It hardly seems worth the effort of introducing
the adjoint system to avoid this simple step, especially in an
exposition of principles.

The first use of the adjoint system in problems having a
superficial resemblance to that considered here was by Bliss® ¢
in his work in ballistics during WW I, but in. these applica-
tions it serves a much more useful purpose. A simple ex-
ample of this kind is that in which the £i(f) are variations
from a normal trajectory due to abnormal initial conditions
and an expression for the final value of just one of the &:(f)
is required, in terms of arbitrary initial'variations of all of the
&(f). The coeflicients in this expression can be obtained with
only one integration of the adjoint equations, whereas if the
same expression were to be obtained by integrating the
equations of variation, n integrations would be required.
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Optimum Planar Circular Orbits
Transfer

Axprew H. Jazwinskr*
Martin Company, Baltimore, Md.

Introduction

RECENT note! points out that the solution obtained by
Jurovies and Melntyre? for the minimum time transfer
of a constant thrust acceleration vehicle between two co-
planar earth circular orbits is in error. It is apparent from
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the lengthy footnote in Jurovies and Melntyre’s paper that
they had considerable difficulties in meeting boundary condi-
tions. Their method of solving the variational boundary
value problem has been déveloped independently by this
author3—5 and successfully applied to the problem at hand
as well as many other problems. Convergence has been ex-
cellent in all problems solved. These results demonstrate
that Jurovics and McIntyre’s solution is erroneous (the opti-
mal eontrol is continuous).

It is the purpose of this note to exhibit a continuous opti-
mal control for the problem under discussion, which every-
where satisfies the Legendre-Clebsch necessary condition,
and to show that a discontinuous control is nonoptimal.
The results obtained by Jurovics and MeclIntyre are not in-
herent to the method of solution used, which is demonstrably
a very good one.

Discussion

The problem was formulated in terms of the (v,7,h) state,
where ¢ is the total velocity, v the local flight path angle, and
h the altitude. Control is embodied in «, the angle between
the velocity and thrust vectors. A minimum time trans-
fer from a 300- to a 1000-statute mile circular earth orbit was
obtained for a vehicle with a constant ratio of (thrust ac-
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Fig.1 Optimal control.

celeration)/(initial gravitational acceleration) equal to 1.7343.
Pertinent constants are GM (universal gravitational con-
stant X earth mass) = 1.408142 X 10% ft3/sec?, and R
(earth radius) = 2.09029 X 107 ft. This transfer corresponds
to a ratio of (radial transfer distance)/(initial orbit radius)
equal to 0.164377—very nearly the problem considered by
Jurovics and Meclntyre? and Greenley.!

The minimum time control obtained is plotted in Fig. 1
as ¢, the angle between the local horizontal and the thrust
direction, which is the control considered by Juroviecs and
Melntyre. A ratio of (minimum transfer time)/(time per
rad in initial orbit) equal to 0.612160 is obtained. The
boundary conditions imposed on the variational boundary
value problem were met to seven significant figures.

The control « for this problem may be written in terms of
the Lagrange multipliers

a = tan~(py/vu0) 1)

where u, is the multiplier associated with the velocity differ-
ential constraint, and u. is the multiplier associated with the
path angle differential constraint. It is observed that « is
multivalued. The appropriate a may be chosen with the
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aid of the Legendre-Clebsch necessary condition. This
condition may be written (for a minimum)

Wy cOSa + o (sine/v) > 0 (2)

In solving the variational boundary value problem, it must
be ascertained that inequality (2) is satisfied at each point
of the solution.

An intermediate control (i.e., not satisfying the desired
boundary conditions) is shown in Fig. 1. As the iterations
proceed, the control is reshaped until at some point (A in
Fig. 1), at assumes the value of 90°. At this point u, = 0
and p, > 0 so that the Legendre-Clebsch condition reduces
to

C sina > 0 >0 3)
It is clear that a discontinuity in « from +90° to —90° is
not permitted since @ = —90° violates condition (3). The

arc beyond such a discontinuity is a nonminimal one. A
continuous control, on the other hand, does satisfy condi-
tion (3). It may be noted that a discontinuity can be
allowed only if the equality in Eq. (2) holds. The control
given in Fig. 1 everywhere satisfies the Legendre-Clebsch
condition.

In closing, it may be emphasized that the origin of the
boundary value problem cannot be forgotten in seeking its
solution. The Euler-Lagrange equations are not the only
conditions that a minimizing arc must satisfy.
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Comment on “Wind-Tunnel
Interference for Wing-Body

Combination™

D. R. HoLpEr*
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HAVE studied with interest Gorgui’s analysis of the

wind-tunnel interference for a wing-body combination.!
Although I have obtained the same result for a circular
tunnel, using the method of images, I believe that the results
are misleading and the conclusion inaccurate.

It is usual to allow for the mean interference by means of a
correction to the angle of attack, and one is then interested
in the spanwise variation of interference which has not been
accounted for by this correction.
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Now, the upwash induced by a change in angle of attack
is not uniform over the span of a wing-body combination.
Indeed, by considering uniform flow past a circular cylinder,
it can be shown that the upwash is doubled in the vicinity of
the wing-body junction. No allowance has been made in
Gorgui’s analysis for the change in body angle of attack, and
this explains the variation in § near the wing-body junction.

It appears that the curves for (r/s = 0) are valid for deter-
mining the correction to angle of attack and the residual
interference for a wing-body combination. There is not,
as suggested, any tendency towards a root stall, apart from
that experienced at the corrected incidence in free flight.
This conclusion is important, in view of the importance at-
tached to stall development work in wind tunnels.
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Correlation of the Critical Pressure of
Conical Shells with That of Equivalent
Cylindrical Shells
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N Ref. 1, Seide showed that the critical pressures for iso-
tropic conical shells under hydrostatic pressure can be cor-
related to those of equivalent cylindrical shells. The correla-
tion yielded an approximate curve for the ratio of the eritical
pressure of conical shells to that of their equivalent eylindrical
shells (Fig. 2 of Ref. 1). A very similar curve was obtained in
Ref. 2 for conventional simple supports (which differ slightly
from Seide’s boundary conditions).

However, in both papers the calculations did not include
large cone angles. Recent computations indicate that for
larger cone angles the single curve should be replaced by a
family of curves. Reappraisal of Fig. 2 of Ref. 1 brings out
this cone angle dependence for 60°, as can be seen in Fig. 1,
where that figure is reproduced with emphasis on the 60°
points, (The remainder were for 10°, 20°, 30°, and 45°.) It
is apparent that a better fitting correlation curve can be
obtained if only cone angles up to 45° are included (or even
better if only up to 30°) and the 60° points are joined by a
similar curve.

Further computations for conventional simple supports by
the method of Ref. 2 yields a family of correlation curves
given in Fig. 2. The curves show the ratio of the ecritical
pressure p of a conical shell to that of an equivalent cylindrical
shell p vs the taper ratio (1=R;/R.). The equivalent cylin-
drical shell is defined as one having the same thickness as the
conical shell, but whose radius is the mean radius of curvature
of the cone and whose length is that of its slant length. As
may be seen, the 60° curve deviates only slightly, whereas
the 75° and 85° curves are noticeably lower. The actual
percentage reduction in the (p/p) ratio is only of the order of
a few percent (up to about 6-7% for a large taper ratio and a
cone angle of 85°), but since it is unconservative it is signifi-
cant.

The computations brought out another nonconservative
secondary effect. Seide’s correlation curve! and that of Ref.
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